论文标题

无间隔的无限零件Chern-Simons-Maxwell理论

Gapless Infinite-component Chern-Simons-Maxwell Theories

论文作者

Chen, Xie, Lam, Ho Tat, Ma, Xiuqi

论文摘要

无限组成部分Chern-Simons-Maxwell(ICSM)理论是对2+1d Chern-Simons-Maxwell理论的3+1D概括,包括无限数量的耦合量规场。它可用于描述有趣的3+1D系统。在物理中。 Rev. B 105,195124(2022),它被用来在叶面框架内外构建间隙的分裂模型。在本文中,我们研究了无间隙ICSM理论的非平凡特征。特别是,我们发现,尽管无间隙2+1D Maxwell理论是限制的,并且由于单极效应而不健壮,但无间隙的ICSM理论是对所有局部扰动的固定和强大的,因此代表了强大的3+1D脱落的无间隙顺序。无间隙ICSM理论的无间隙可以被理解为外来单一形式对称性的自发破坏的结果。此外,对于无间隙ICSM理论的子类,我们发现了系统的相关性和响应中有趣的拓扑特征。最后,对于这一理论子类,我们提出了捕获所有这些特征的模型的完全连续的现场理论描述。

The infinite-component Chern-Simons-Maxwell (iCSM) theory is a 3+1D generalization of the 2+1D Chern-Simons-Maxwell theory by including an infinite number of coupled gauge fields. It can be used to describe interesting 3+1D systems. In Phys. Rev. B 105, 195124 (2022), it was used to construct gapped fracton models both within and beyond the foliation framework. In this paper, we study the nontrivial features of gapless iCSM theories. In particular, we find that while gapless 2+1D Maxwell theories are confined and not robust due to monopole effect, gapless iCSM theories are deconfined and robust against all local perturbation and hence represent a robust 3+1D deconfined gapless order. The gaplessness of the gapless iCSM theory can be understood as a consequence of the spontaneous breaking of an exotic one-form symmetry. Moreover, for a subclass of the gapless iCSM theories, we find interesting topological features in the correlation and response of the system. Finally, for this subclass of theories, we propose a fully continuous field theory description of the model that captures all these features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源