论文标题

$α$ -Rank-Collections:用不确定的实用程序分析预期的战略行为

$α$-Rank-Collections: Analyzing Expected Strategic Behavior with Uncertain Utilities

论文作者

Pieroth, Fabian R., Bichler, Martin

论文摘要

游戏理论在很大程度上取决于基本实用程序功能的可用性,但是在诸如匹配市场之类的领域中,通常只会引起序数偏好。文献着重于具有简单主要策略的机制,但是许多现实世界中的应用缺乏主导策略,从而使结果对确定策略很重要。即使无法提供有关红衣主教公用事业的精确信息,但通常可以访问有关实用程序功能的可能性的某些数据。我们建议使用贝叶斯游戏通过将其视为普通形式游戏的集合来形式化对决策者公用事业的不确定性。我们没有寻找贝叶斯 - 纳什平衡,而是研究战略游戏的不确定性如何反映公用事业的不确定性。为此,我们介绍了一个新颖的解决方案概念,称为$α$ -Rank-Collections,该概念将$α$ -Lank扩展到贝叶斯游戏。这使我们能够分析战略性游戏,例如非策略性匹配市场,目前缺乏适当的解决方案概念。 $α$ -RANK-Collections表征了从长远来看,在复制器动力学下遇到特定策略概况的预期概率,而不是预测特定的平衡策略概况。我们通过使用波士顿机制的实例对$α$ rank-collections进行了实验性评估,发现我们的解决方案概念与贝叶斯 - 纳什平衡相比提供了更细微的预测。此外,我们证明$α$ -RANK-COLLECTIONS是正仿射转换的不变,这是解决方案概念的标准属性,并且有效近似。

Game theory relies heavily on the availability of cardinal utility functions, but in fields such as matching markets, only ordinal preferences are typically elicited. The literature focuses on mechanisms with simple dominant strategies, but many real-world applications lack dominant strategies, making the intensity of preferences between outcomes important for determining strategies. Even though precise information about cardinal utilities is not available, some data about the likelihood of utility functions is often accessible. We propose to use Bayesian games to formalize uncertainty about the decision-makers' utilities by viewing them as a collection of normal-form games. Instead of searching for the Bayes-Nash equilibrium, we study how uncertainty in utilities is reflected in uncertainty of strategic play. To do this, we introduce a novel solution concept called $α$-Rank-collections, which extends $α$-Rank to Bayesian games. This allows us to analyze strategic play in, for example, non-strategyproof matching markets, for which appropriate solution concepts are currently lacking. $α$-Rank-collections characterize the expected probability of encountering a certain strategy profile under replicator dynamics in the long run, rather than predicting a specific equilibrium strategy profile. We experimentally evaluate $α$-Rank-collections using instances of the Boston mechanism, finding that our solution concept provides more nuanced predictions compared to Bayes-Nash equilibria. Additionally, we prove that $α$-Rank-collections are invariant to positive affine transformations, a standard property for a solution concept, and are efficient to approximate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源