论文标题

人类流动性数据的扭曲镜头

The distorting lens of human mobility data

论文作者

Gallotti, Riccardo, Maniscalco, Davide, Barthelemy, Marc, De Domenico, Manlio

论文摘要

复杂的人类流动模式的描述是许多重要应用的核心,从城市主义和运输到流行病的遏制。由于新来源(例如电话CDR,GPS设备或智能手机应用程序),有关集体人类运动的数据,一旦稀缺就可以广泛使用。然而,通过隐式假设它是通用动力学的有效实例,无论数据收集和处理技术等因素,它仍然是常见的。在这里,我们通过比较从7个不同的数据源获得的人类流动数据集,在145个国家 /地区追溯了5亿多人的个人,以前所未有的规模测试了这样的总体假设。我们报告了所得的移动性网络,尤其是先前认为是通用的位移分布的广泛量化差异。这些变化 - 不一定意味着人类的流动性不是普遍的 - 也影响了这些网络上发生的过程,正如我们为流行病扩散的特定情况所示。我们的结果表明,至关重要的需要披露数据处理,总体而言要遵循良好的实践,以确保结果的鲁棒性和可重复性。

The description of complex human mobility patterns is at the core of many important applications ranging from urbanism and transportation to epidemics containment. Data about collective human movements, once scarce, has become widely available thanks to new sources such as Phone CDR, GPS devices, or Smartphone apps. Nevertheless, it is still common to rely on a single dataset by implicitly assuming that it is a valid instance of universal dynamics, regardless of factors such as data gathering and processing techniques. Here, we test such an overarching assumption on an unprecedented scale by comparing human mobility datasets obtained from 7 different data-sources, tracing over 500 millions individuals in 145 countries. We report wide quantifiable differences in the resulting mobility networks and, in particular, in the displacement distribution previously thought to be universal. These variations -- that do not necessarily imply that the human mobility is not universal -- also impact processes taking place on these networks, as we show for the specific case of epidemic spreading. Our results point to the crucial need for disclosing the data processing and, overall, to follow good practices to ensure the robustness and the reproducibility of the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源