论文标题
超热木星kelt-9b的近红外发射光谱中的强烈H-不透明度信号
A strong H- opacity signal in the near-infrared emission spectrum of the ultra-hot Jupiter KELT-9b
论文作者
论文摘要
我们介绍了迄今为止检测到的最热的传播系外行星的光谱次级日食的分析,即用宽场摄像头3在哈勃空间望远镜上获得的KELT-9B。 我们将这些数据与有关恒星脉动和spitzer/红外阵列摄像机以及该目标的卫星日食的传播信息进行补充,以获得宽带热发射光谱。 我们提取的频谱在1.4 $ $ $ m处表现出明显的转口。这指向h $^{ - } $塑造光谱的无界不相差。 为了解释频谱,我们执行自洽的1D平衡化学前向模型的网格检索,从而改变了组成和能量预算。 具有太阳金属性和C/O比的模型可提供较差的拟合度,因为H $^{ - } $信号比预期的要强,需要过量的电子。这将我们的检索推向了高大气金属($ [m/h] = 1.98^{+0.19} _ { - 0.21} $)和一个c/o比率,该比率为2.4 $σ$。我们质疑形成这种高金属性行星的生存能力,因此提供了其他情况以增加这种大气中的电子密度。 我们还查看了一个替代模型,在该模型中,我们淬灭了Tio和vo。这种拟合会导致具有略微属极金属性和c/o比的大气($ [m/h] = -0.22^{+0.17} _ { - 0.13} $,log(c/o)$ = - 0.34^{+0.34^{+0.19} _ { - 0.34} $)。但是,所需的TIO丰度是通过对同一行星的最新高分辨率测量来提出的。
We present the analysis of a spectroscopic secondary eclipse of the hottest transiting exoplanet detected to date, KELT-9b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We complement these data with literature information on stellar pulsations and Spitzer/Infrared Array Camera and Transiting Exoplanet Survey Satellite eclipse depths of this target to obtain a broadband thermal emission spectrum. Our extracted spectrum exhibits a clear turnoff at 1.4$μ$m. This points to H$^{-}$ bound-free opacities shaping the spectrum. To interpret the spectrum, we perform grid retrievals of self-consistent 1D equilibrium chemistry forward models, varying the composition and energy budget. The model with solar metallicity and C/O ratio provides a poor fit because the H$^{-}$ signal is stronger than expected, requiring an excess of electrons. This pushes our retrievals toward high atmospheric metallicities ($[M/H]=1.98^{+0.19}_{-0.21}$) and a C/O ratio that is subsolar by 2.4$σ$. We question the viability of forming such a high-metallicity planet, and therefore provide other scenarios to increase the electron density in this atmosphere. We also look at an alternative model in which we quench TiO and VO. This fit results in an atmosphere with a slightly subsolar metallicity and subsolar C/O ratio ($[M/H]=-0.22^{+0.17}_{-0.13}$, log(C/O)$=-0.34^{+0.19}_{-0.34}$). However, the required TiO abundances are disputed by recent high-resolution measurements of the same planet.