论文标题
GNS:可推广的基于颗粒和流体建模的基于概括的图形神经网络模拟器
GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling
论文作者
论文摘要
我们开发了一个基于Pytorch的图形网络模拟器(GNS),该模拟器(GNS)学习物理学并预测颗粒和流体系统的流动行为。 GNS用代表材料点集合的节点和连接代表粒子或粒子簇之间局部相互作用的节点的链接来分散域。 GNS通过在图表上传递的消息来学习交互法。 GNS具有三个组件:(a)编码器,将粒子信息嵌入到潜在图中,边缘是学习的函数; (b)处理器,该处理器允许数据传播并计算跨步骤的节点相互作用; (c)解码器,从图中提取相关的动力学(例如粒子加速度)。我们引入了物理启发的简单诱导偏见,例如惯性框架,允许学习算法在另一个方面优先考虑一种解决方案(恒定引力加速度),从而减少学习时间。 GNS实施使用半平式Euler集成来根据预测的加速度更新下一个状态。在轨迹数据上训练的GNS可以推广,可以预测训练过程中未见的复杂边界条件下的粒子运动学。训练有素的模型可以准确预测其相关材料点方法(MPM)模拟的5 \%误差。这些预测比传统MPM模拟快5,000倍(MPM模拟为2.5小时,而GNS模拟颗粒流量为20 s)。 GNS替代物在解决优化,控制,原位的关键区域预测和逆类型问题方面很受欢迎。 GNS代码可在https://github.com/geoelements/gns的开源MIT许可下获得。
We develop a PyTorch-based Graph Network Simulator (GNS) that learns physics and predicts the flow behavior of particulate and fluid systems. GNS discretizes the domain with nodes representing a collection of material points and the links connecting the nodes representing the local interaction between particles or clusters of particles. The GNS learns the interaction laws through message passing on the graph. GNS has three components: (a) Encoder, which embeds particle information to a latent graph, the edges are learned functions; (b) Processor, which allows data propagation and computes the nodal interactions across steps; and (c) Decoder, which extracts the relevant dynamics (e.g., particle acceleration) from the graph. We introduce physics-inspired simple inductive biases, such as an inertial frame that allows learning algorithms to prioritize one solution (constant gravitational acceleration) over another, reducing learning time. The GNS implementation uses semi-implicit Euler integration to update the next state based on the predicted accelerations. GNS trained on trajectory data is generalizable to predict particle kinematics in complex boundary conditions not seen during training. The trained model accurately predicts within a 5\% error of its associated material point method (MPM) simulation. The predictions are 5,000x faster than traditional MPM simulations (2.5 hours for MPM simulations versus 20 s for GNS simulation of granular flow). GNS surrogates are popular for solving optimization, control, critical-region prediction for in situ viz, and inverse-type problems. The GNS code is available under the open-source MIT license at https://github.com/geoelements/gns.