论文标题

DEDRDISTILL:一个普遍的知识蒸馏框架的DETR家庭

DETRDistill: A Universal Knowledge Distillation Framework for DETR-families

论文作者

Chang, Jiahao, Wang, Shuo, Xu, Haiming, Chen, Zehui, Yang, Chenhongyi, Zhao, Feng

论文摘要

基于变压器的探测器(DITRS)因其简单的框架而变得流行,但是较大的模型大小和大量的时间消耗阻碍了他们在现实世界中的部署。尽管知识蒸馏(KD)可以是一种吸引人的技术,可以将巨型探测器压缩到小型探测器中,以进行可比的检测性能和低推理成本。由于DITR将对象检测作为集合预测问题,因此现有为经典基于卷积的检测器设计的KD方法可能不直接适用。在本文中,我们提出了一种新型的知识蒸馏方法DeDrdistill。具体来说,我们首先设计了匈牙利匹配的对数蒸馏,以鼓励学生模型具有确切的预测,就像教师detrs的预测一样。接下来,我们提出一种目标感知功能蒸馏,以帮助学生模型从教师模型的以对象为中心的特征中学习。最后,为了提高学生DETR的融合率,我们引入了查询优先蒸馏,以加快学生模型从训练有素的查询和教师模型的稳定分配中学习。可可数据集的广泛实验结果验证了我们方法的有效性。值得注意的是,DeDrdistill始终将各种图表提高了2.0多个地图,甚至超过了他们的教师模型。

Transformer-based detectors (DETRs) are becoming popular for their simple framework, but the large model size and heavy time consumption hinder their deployment in the real world. While knowledge distillation (KD) can be an appealing technique to compress giant detectors into small ones for comparable detection performance and low inference cost. Since DETRs formulate object detection as a set prediction problem, existing KD methods designed for classic convolution-based detectors may not be directly applicable. In this paper, we propose DETRDistill, a novel knowledge distillation method dedicated to DETR-families. Specifically, we first design a Hungarian-matching logits distillation to encourage the student model to have the exact predictions as that of teacher DETRs. Next, we propose a target-aware feature distillation to help the student model learn from the object-centric features of the teacher model. Finally, in order to improve the convergence rate of the student DETR, we introduce a query-prior assignment distillation to speed up the student model learning from well-trained queries and stable assignment of the teacher model. Extensive experimental results on the COCO dataset validate the effectiveness of our approach. Notably, DETRDistill consistently improves various DETRs by more than 2.0 mAP, even surpassing their teacher models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源