论文标题

$ ϕ^{6} $模型的近似扭结解决方案在低速极限

Approximate kink-kink solutions for the $ϕ^{6}$ model in the low-speed limit

论文作者

Moutinho, Abdon

论文摘要

该手稿是两篇论文系列中的第一组,研究了两个具有低速$ v $的矛盾的弹性和稳定性的问题,用于非线性波方程,称为$ 1+1 $ $ 1+1 $。在本文中,我们构建了一系列近似解决方案$(ϕ_ {k}(v,v,t,x))_ {k \ in \ mathbb {n} _ {n} _ {\ geq 2}} $对于这个非线性波方程$+\ infty。$本文中使用的方法不仅限于$ ϕ^{6} $模型。

This manuscript is the first of a series of two papers that study the problem of elasticity and stability of the collision of two kinks with low speed $v$ for the nonlinear wave equation known as the $ϕ^{6}$ model in dimension $1+1$. In this paper, we construct a sequence of approximate solutions $(ϕ_{k}(v,t,x))_{k\in\mathbb{N}_{\geq 2}}$ for this nonlinear wave equation such that each function $ϕ_{k}(v,t,x)$ converges in the energy norm to the traveling kink-kink with speed $v$ when $t$ goes to $+\infty.$ The methods used in this paper are not restricted only to the $ϕ^{6}$ model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源