论文标题

渐近的二级化解决方案,用于时间依赖的哈密顿

Asymptotically quasiperiodic solutions for time-dependent Hamiltonians

论文作者

Scarcella, Donato

论文摘要

2015年,M。Canadell和R. de la llave考虑了一个载体场的时间依赖性扰动,该矢量场具有支持准碘溶液的不变圆环。在对扰动和扰动衰减(当T到达无限时)的较小假设下,时间呈指数速度,它们证明了与未渗透的系统(非扰动式的quasiperiodic odicodic solutions)的及时(t转移到无限型溶液)的及时(t转移到无限型溶液)的存在。 在本文中,我们将这种结果推广到特定的时间依赖时间的哈密顿系统。时间的指数衰减是放松的(由于哈密顿系统的几何特性),并且消除了扰动上的小假设。

In 2015, M. Canadell and R. de la Llave consider a time-dependent perturbation of a vector field having an invariant torus supporting quasiperiodic solutions. Under a smallness assumption on the perturbation and assuming the perturbation decays (when t goes to infinity) exponentially fast in time, they proved the existence of motions converging in time (when t goes to infinity) to quasiperiodic solutions associated with the unperturbed system (asymptotically quasiperiodic solutions). In this paper, we generalize this result in the particular case of time-dependent Hamiltonian systems. The exponential decay in time is relaxed (due to the geometrical properties of Hamiltonian systems) and the smallness assumption on the perturbation is removed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源