论文标题
渐近的二级化解决方案,用于时间依赖的哈密顿
Asymptotically quasiperiodic solutions for time-dependent Hamiltonians
论文作者
论文摘要
2015年,M。Canadell和R. de la llave考虑了一个载体场的时间依赖性扰动,该矢量场具有支持准碘溶液的不变圆环。在对扰动和扰动衰减(当T到达无限时)的较小假设下,时间呈指数速度,它们证明了与未渗透的系统(非扰动式的quasiperiodic odicodic solutions)的及时(t转移到无限型溶液)的及时(t转移到无限型溶液)的存在。 在本文中,我们将这种结果推广到特定的时间依赖时间的哈密顿系统。时间的指数衰减是放松的(由于哈密顿系统的几何特性),并且消除了扰动上的小假设。
In 2015, M. Canadell and R. de la Llave consider a time-dependent perturbation of a vector field having an invariant torus supporting quasiperiodic solutions. Under a smallness assumption on the perturbation and assuming the perturbation decays (when t goes to infinity) exponentially fast in time, they proved the existence of motions converging in time (when t goes to infinity) to quasiperiodic solutions associated with the unperturbed system (asymptotically quasiperiodic solutions). In this paper, we generalize this result in the particular case of time-dependent Hamiltonian systems. The exponential decay in time is relaxed (due to the geometrical properties of Hamiltonian systems) and the smallness assumption on the perturbation is removed.