论文标题
X-Cube Floquet代码
The X-Cube Floquet Code
论文作者
论文摘要
受X-Cube模型的耦合层构造的启发,我们引入了X-Cube Floquet代码,这是一种动态量子误差校正代码,其中编码逻辑Qubits的数量随系统大小而增长。 X-Cube Floquet代码是在三维晶格上定义的,该晶格是由在$ xy $,$ yz $和$ xz $方向上相交的二维层构建的,并包括一系列两种Qubit的测量序列,这些测量将两层结合在一起。在单个浮子周期内,代码空间在X-Cube Fracton订单和纠缠的二维复曲面代码之间切换。分析了编码的逻辑Qubits的动力学,我们认为新代码具有非零误差阈值。我们提供了X-Cube模型的新哈密顿式实现,并且更普遍地探索了与定义X-Cube Floquet代码的测量顺序相关的相图。
Inspired by the coupled-layer construction of the X-Cube model, we introduce the X-Cube Floquet code, a dynamical quantum error-correcting code where the number of encoded logical qubits grows with system size. The X-Cube Floquet code is defined on a three-dimensional lattice, built from intersecting two-dimensional layers in the $xy$, $yz$, and $xz$ directions, and consists of a periodic sequence of two-qubit measurements which couple the layers together. Within a single Floquet cycle, the codespace switches between that of the X-Cube fracton order and layers of entangled, two-dimensional toric codes. The encoded logical qubits' dynamics are analyzed, and we argue that the new code has a non-zero error threshold. We provide a new Hamiltonian realization of the X-Cube model and, more generally, explore the phase diagram related to the sequence of measurements that define the X-Cube Floquet code.