论文标题

DIAASQ:基于对话方面的情感四倍分析的基准

DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis

论文作者

Li, Bobo, Fei, Hao, Li, Fei, Wu, Yuhan, Zhang, Jinsong, Wu, Shengqiong, Li, Jingye, Liu, Yijiang, Liao, Lizi, Chua, Tat-Seng, Ji, Donghong

论文摘要

近几十年来,基于方面的情感分析(ABSA)的快速发展显示了现实世界中的巨大潜力。但是,当前的ABSA作品主要仅限于单个文本作品的场景,因此研究中的研究未经探索。为了弥合细粒情感分析和会话意见挖掘之间的差距,在这项工作中,我们介绍了基于对话方面的情绪四倍分析的新任务,即迪亚斯克,旨在在对话中检测到目标 - 偏见的四边形。我们用中文和英语手动构建一个大规模的高质量DIAASQ数据集。我们故意开发了一个神经模型来基准这项任务,该任务有效地进行了端到端四核预测,并设法合并了丰富的对话和话语特征表现形式,以更好地交叉牙齿四倍提取。我们希望新的基准测试能够刺激情感分析社区的更多进步。

The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. To bridge the gap between fine-grained sentiment analysis and conversational opinion mining, in this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the quadruple of target-aspect-opinion-sentiment in a dialogue. We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages. We deliberately develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction, and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We hope the new benchmark will spur more advancements in the sentiment analysis community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源