论文标题

LGSQE:轻巧生成的样品质量评估

LGSQE: Lightweight Generated Sample Quality Evaluatoin

论文作者

Zhao, Ganning, Magoulianitis, Vasileios, You, Suya, Kuo, C. -C. Jay

论文摘要

尽管在评估生成模型方面进行了多产,但对单个生成样本的质量评估的研究很少。为了解决此问题,在这项工作中提出了轻巧生成的样本质量评估(LGSQE)方法。在LGSQE的训练阶段,对二元分类器进行了对真实和合成样本的训练,其中实际和合成数据分别标记为0和1。在推理阶段,分类器将软标签(从0到1)分配给每个生成的样品。软标签的值表示质量水平;也就是说,如果其软标签更接近0,则质量会更好。LGSQE可以用作质量控制的后处理模块。此外,LGSQE可用于通过汇总样品级质量来评估生成模型的性能,例如准确性,AUC,精度和回忆。实验是在CIFAR-10和MNIST上进行的,以证明LGSQE可以保留与Frechet Inception Inteption距离(FID)预测的相同性能等级顺序(FID),但复杂性的较低。

Despite prolific work on evaluating generative models, little research has been done on the quality evaluation of an individual generated sample. To address this problem, a lightweight generated sample quality evaluation (LGSQE) method is proposed in this work. In the training stage of LGSQE, a binary classifier is trained on real and synthetic samples, where real and synthetic data are labeled by 0 and 1, respectively. In the inference stage, the classifier assigns soft labels (ranging from 0 to 1) to each generated sample. The value of soft label indicates the quality level; namely, the quality is better if its soft label is closer to 0. LGSQE can serve as a post-processing module for quality control. Furthermore, LGSQE can be used to evaluate the performance of generative models, such as accuracy, AUC, precision and recall, by aggregating sample-level quality. Experiments are conducted on CIFAR-10 and MNIST to demonstrate that LGSQE can preserve the same performance rank order as that predicted by the Frechet Inception Distance (FID) but with significantly lower complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源