论文标题

相对论无碰撞浆液介导的重新连接的有效电阻率

Effective resistivity in relativistic collisionless plasmoid-mediated reconnection

论文作者

Selvi, Sebastiaan, Porth, Oliver, Ripperda, Bart, Bacchini, Fabio, Sironi, Lorenzo, Keppens, Rony

论文摘要

磁重新连接可以通过在紧凑型物体周围高度磁化区域中产生非热能分布来为壮观的高能天体物理现象提供动力。通过二维完全动力学粒子中的模拟(PIC)模拟,我们研究了相对论无碰撞的纤维状介导的对磁性支配的配对等离子体的重新连接,带有和没有引导场。在X点中,不同的流量会导致非对抗热压张量,颗粒的有限停留时间会导致无局部的无碰撞有效电阻率。在这里,在完全开发的浆液链中首次进行相对论重新连接,我们通过基于我们的PIC模拟的统计分析,使用完整的欧姆定律确定了驱动非理想电场的机制。我们表明,非理想的电场主要是由非脑型热压梯度驱动的。我们提出了一个动力的物理学,动机的非均匀有效电阻率模型,该模型在全球尺度上可以忽略不计,并且仅在X点上变得很重要,该模型捕获了无碰撞重新连接的特性,其目的是模仿其在非理想的磁性磁性描述中的基本性。这种有效的电阻率模型为设计物理扎根的全球模型提供了可行的机会,以重新连接供电的高能排放。

Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing non-thermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without guide field. In X-points, where diverging flows result in a non-diagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain we identify the mechanisms driving the non-ideal electric field using a full Ohm's law by means of a statistical analysis based on our PIC simulations. We show that the non-ideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated non-uniform effective resistivity model, which is negligible on global scales and becomes significant only locally in X-points, that captures the properties of collisionless reconnection with the aim of mimicking its essentials in non-ideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源