论文标题

自我条件嵌入文本生成的扩散

Self-conditioned Embedding Diffusion for Text Generation

论文作者

Strudel, Robin, Tallec, Corentin, Altché, Florent, Du, Yilun, Ganin, Yaroslav, Mensch, Arthur, Grathwohl, Will, Savinov, Nikolay, Dieleman, Sander, Sifre, Laurent, Leblond, Rémi

论文摘要

连续扩散模型是否可以为图像生成的自然语言带来相同的性能突破吗?为了避免文本数据的离散性质,我们可以简单地在嵌入的连续空间中投射令牌,这是语言建模的标准。我们提出了自我条件的嵌入扩散,这是一种连续的扩散机制,可在令牌嵌入方式上运行,并允许学习有条件和无条件文本生成的灵活且可扩展的扩散模型。通过定性和定量评估,我们表明我们的文本扩散模型可生成与标准自回归语言模型产生的样本相当的样本 - 而理论上在推理时在加速器硬件上更有效。我们的工作为扩大文本扩散模型的扩散模型铺平了道路,类似于自回归模型,并通过最新的改进来改善性能,以连续扩散。

Can continuous diffusion models bring the same performance breakthrough on natural language they did for image generation? To circumvent the discrete nature of text data, we can simply project tokens in a continuous space of embeddings, as is standard in language modeling. We propose Self-conditioned Embedding Diffusion, a continuous diffusion mechanism that operates on token embeddings and allows to learn flexible and scalable diffusion models for both conditional and unconditional text generation. Through qualitative and quantitative evaluation, we show that our text diffusion models generate samples comparable with those produced by standard autoregressive language models - while being in theory more efficient on accelerator hardware at inference time. Our work paves the way for scaling up diffusion models for text, similarly to autoregressive models, and for improving performance with recent refinements to continuous diffusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源