论文标题
解决katona问题的解决方案
Solution to a problem of Katona on counting cliques of weighted graphs
论文作者
论文摘要
图$ g $的顶点套装$ v(g)的子集$ i $称为$ k $ clique独立套装$ g $的$ g $,如果$ k $ i $ in $ i $ $ i $ a $ k $ -clique的$ k $ clique的$ g $。独立套件是$ 2 $ -Clique Independent Set。令$π_k(g)$表示$ g $的$ k $ cliques的数量。对于函数$ w:v(g)\ rightarrow \ {0,1,2,\ dots \} $,让$ g(w)$是从$ g $获得的图表,将每个顶点$ v $替换为$ w(v)$ - clique $ k^v $,每个顶点$ k^u $ k^u $ k^u $ k^u k^U $ k^$ k^v $ k^v v vertex a $ \ {u,v \} $ $ g $。对于整数$ m \ geq 1 $,请考虑使用$ \ sum_ {v \ in V(g)} w(v)= m $的任何$ w $。对于$ u \ subseteq v(g)$,我们说$ w $在$ u $上是均匀的,如果$ w(v)= 0 $ in v(g)\ setMinus u $ in v(g)\ setMinus u $,并且对于u $ u $ u $,$ w($ w(u)的每个$ u \ w(u) \ right \ rfloor $或$ w(u)= \ left \ lceil m/| u | \ right \ rceil $。卡托纳(Katona)询问$π_k(g(w))$是否最小,当$ w $在最大的$ k $ clique独立套件上是$ g $的均匀。他特别强调了Sperner Graph $ b_n $,由$ v(b_n)= \ {x \ colon x \ subseteq \ {1,\ dots,n \} \} $ and $ e(b_n)= \ {\ {\ {x,y \} \ colon x \ subseT \ n \ s $他提供了$ k = 2 $(和任何$ g $)的肯定答案。我们确定每个$ k \ geq 3 $的答案为负的图形。其中包括$ n \ geq 2 $的$ b_n $。概括了Sperner的定理以及Qian,Engel和Xu的最新结果,我们表明$π_k(b_n(w))$是最大的$ w $在最大的独立套装$ b_n $上时最小的。我们还表明,对于完整的多方图和弦图,相同的保留也相同。我们表明,使用Bohman在无三角形图上的深层结果,并非每个图形都是如此。
A subset $I$ of the vertex set $V(G)$ of a graph $G$ is called a $k$-clique independent set of $G$ if no $k$ vertices in $I$ form a $k$-clique of $G$. An independent set is a $2$-clique independent set. Let $π_k(G)$ denote the number of $k$-cliques of $G$. For a function $w: V(G) \rightarrow \{0, 1, 2, \dots\}$, let $G(w)$ be the graph obtained from $G$ by replacing each vertex $v$ by a $w(v)$-clique $K^v$ and making each vertex of $K^u$ adjacent to each vertex of $K^v$ for each edge $\{u,v\}$ of $G$. For an integer $m \geq 1$, consider any $w$ with $\sum_{v \in V(G)} w(v) = m$. For $U \subseteq V(G)$, we say that $w$ is uniform on $U$ if $w(v) = 0$ for each $v \in V(G) \setminus U$ and, for each $u \in U$, $w(u) = \left\lfloor m/|U| \right\rfloor$ or $w(u) = \left\lceil m/|U| \right\rceil$. Katona asked if $π_k(G(w))$ is smallest when $w$ is uniform on a largest $k$-clique independent set of $G$. He placed particular emphasis on the Sperner graph $B_n$, given by $V(B_n) = \{X \colon X \subseteq \{1, \dots, n\}\}$ and $E(B_n) = \{\{X,Y\} \colon X \subsetneq Y \in V(B_n)\}$. He provided an affirmative answer for $k = 2$ (and any $G$). We determine graphs for which the answer is negative for every $k \geq 3$. These include $B_n$ for $n \geq 2$. Generalizing Sperner's Theorem and a recent result of Qian, Engel and Xu, we show that $π_k(B_n(w))$ is smallest when $w$ is uniform on a largest independent set of $B_n$. We also show that the same holds for complete multipartite graphs and chordal graphs. We show that this is not true of every graph, using a deep result of Bohman on triangle-free graphs.