论文标题

旋转等值的图形神经网络,用于学习玻璃液体表示

Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations

论文作者

Pezzicoli, Francesco Saverio, Charpiat, Guillaume, Landes, François P.

论文摘要

关联玻璃液体及其动力学的静态结构的困难问题是机器学习的良好目标,这种方法擅长寻找隐藏在数据中的复杂模式。的确,这种方法目前是玻璃液体社区中的热门话题,在该社区中,艺术的状态由图形神经网络(GNN)组成,它具有强大的表现力,但具有很强的模型,并且缺乏解释性。受到机器学习群 - 等级表示领域的最新进展的启发,我们建立了一个GNN,通过限制旋转式(SE(3))均衡性来了解玻璃的静态结构的强大表示。我们表明,该约束可以显着提高参数数量或减少数量的预测能力,但最重要的是,提高了概括到看不见的温度的能力。与其他GNN相比,我们的模型保持了深层网络,但我们的基本卷积层的作用直接与众所周知的旋转不变的专家特征有关。通过展示前所未有的性能的转移学习实验,我们证明了我们的网络学习了强大的表示,这使我们能够推动玻璃的学习结构顺序参数的想法。

The difficult problem of relating the static structure of glassy liquids and their dynamics is a good target for Machine Learning, an approach which excels at finding complex patterns hidden in data. Indeed, this approach is currently a hot topic in the glassy liquids community, where the state of the art consists in Graph Neural Networks (GNNs), which have great expressive power but are heavy models and lack interpretability. Inspired by recent advances in the field of Machine Learning group-equivariant representations, we build a GNN that learns a robust representation of the glass' static structure by constraining it to preserve the roto-translation (SE(3)) equivariance. We show that this constraint significantly improves the predictive power at comparable or reduced number of parameters but most importantly, improves the ability to generalize to unseen temperatures. While remaining a Deep network, our model has improved interpretability compared to other GNNs, as the action of our basic convolution layer relates directly to well-known rotation-invariant expert features. Through transfer-learning experiments displaying unprecedented performance, we demonstrate that our network learns a robust representation, which allows us to push forward the idea of a learned structural order parameter for glasses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源