论文标题
关于在线路紧密关闭的定位-S_4 $四分之一
On Localization of Tight Closure in Line-$S_4$ Quartics
论文作者
论文摘要
从2010年起Brenner和Monsky的作品以及1998年的Hilbert-Kunz计算的基础上,我们展示了超过$ \ operline {\ Mathbb {f} _2} $的超浮雕的新颖示例,其中紧密关闭并不与本地化通勤。我们的方法涉及使用Sierpiński三角形的令人惊讶的瓷砖参数,以及对特征两个中某个动力学系统的检查。
Building on work of Brenner and Monsky from 2010 and on a Hilbert-Kunz calculation of Monsky from 1998, we exhibit a novel example of a hypersurface over $\overline{\mathbb{F}_2}$ in which tight closure does not commute with localization. Our methods involve a surprising tiling argument using Sierpiński triangles, as well as an inspection of a certain dynamical system in characteristic two.