论文标题

超越连续时间多阶段马尔可夫模型的时间同步

Beyond time-homogeneity for continuous-time multistate Markov models

论文作者

Kendall, Emmett B., Williams, Jonathan P., Hermansen, Gudmund H., Bois, Frederic, Thanh, Vo Hong

论文摘要

多层马尔可夫模型是用于有限状态空间上支持的观察到的或潜在随机过程的数据建模的规范参数方法。连续时间马尔可夫过程描述了随着时间的流逝观察到的数据,例如,在纵向医学数据中通常情况。假设连续的马尔可夫过程是时间均匀的,则可以从kolmogorov向前方程来得出封闭形式的可能性函数 - 一个具有众所周知的矩阵指数解的微分方程系统。但是,不幸的是,正向方程并未接受分析解决方案,用于连续时间,持续时间的马尔可夫过程,因此研究人员和从业人员通常会简化地假设该过程是分段时间均匀的。在本文中,我们为参数估计的潜在偏差提供了直觉和说明,这在更现实的情况下可能会违反分段均匀的假设,并且我们主张以一种真正的时间均匀的方式提倡解决可能性计算的解决方案。特定的重点是在多层马尔可夫模型的背景下进行的,该模型允许状态标签错误分类,该模型更广泛地适用于隐藏的马尔可夫模型(HMMS),而贝叶斯计算绕过了计算要求要求的数值梯度近似值的必要性,以获取最大可能性估计(MLE)。补充材料可在线提供。

Multistate Markov models are a canonical parametric approach for data modeling of observed or latent stochastic processes supported on a finite state space. Continuous-time Markov processes describe data that are observed irregularly over time, as is often the case in longitudinal medical data, for example. Assuming that a continuous-time Markov process is time-homogeneous, a closed-form likelihood function can be derived from the Kolmogorov forward equations -- a system of differential equations with a well-known matrix-exponential solution. Unfortunately, however, the forward equations do not admit an analytical solution for continuous-time, time-inhomogeneous Markov processes, and so researchers and practitioners often make the simplifying assumption that the process is piecewise time-homogeneous. In this paper, we provide intuitions and illustrations of the potential biases for parameter estimation that may ensue in the more realistic scenario that the piecewise-homogeneous assumption is violated, and we advocate for a solution for likelihood computation in a truly time-inhomogeneous fashion. Particular focus is afforded to the context of multistate Markov models that allow for state label misclassifications, which applies more broadly to hidden Markov models (HMMs), and Bayesian computations bypass the necessity for computationally demanding numerical gradient approximations for obtaining maximum likelihood estimates (MLEs). Supplemental materials are available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源