论文标题

有效评估具有大量MIMO的前辅助URLLC的误差概率

Efficient evaluation of the error probability for pilot-assisted URLLC with Massive MIMO

论文作者

Kislal, A. Oguz, Lancho, Alejandro, Durisi, Giuseppe, Ström, Erik

论文摘要

我们提出了一种具有数值高效的方法,用于评估与参数$ s $结合的随机编码联合,该联合在有限宽度范围内通过飞行员辅助传输方案在有限块长度方面可以实现的错误概率,该方案采用高斯代码簿并在无内存的块挡块通道上运行。我们的方法依赖于鞍点近似,该近似与以前报告的相似情况的结果不同,它是针对每个代码字跨越的褪色块(又称多样性分支)的数量进行的,而不是每个块的通道使用次数。这种不同的方法避免了误差概率的昂贵数值平均值,而在接收器处的褪色过程的实现及其基于飞行员的估计值的实现,并导致准确估算误差概率所需的通道实现数量大大减少。我们针对单人通信链路和大量多输入多输出(MIMO)网络的数值实验表明,当两个或多个多样性分支可用时,可以准确地估计误差概率,而与sadterption相对于五个频道的数字范围的数字数量相比,与Monte-Cartep的数值相比,误以上是Monte-Car的数字数量的数字数量,而不是Monte coldpoint of Monte-carrlo same的数字数量。每个街区。

We propose a numerically efficient method for evaluating the random-coding union bound with parameter $s$ on the error probability achievable in the finite-blocklength regime by a pilot-assisted transmission scheme employing Gaussian codebooks and operating over a memoryless block-fading channel. Our method relies on the saddlepoint approximation, which, differently from previous results reported for similar scenarios, is performed with respect to the number of fading blocks (a.k.a. diversity branches) spanned by each codeword, instead of the number of channel uses per block. This different approach avoids a costly numerical averaging of the error probability over the realizations of the fading process and of its pilot-based estimate at the receiver and results in a significant reduction of the number of channel realizations required to estimate the error probability accurately. Our numerical experiments for both single-antenna communication links and massive multiple-input multiple-output (MIMO) networks show that, when two or more diversity branches are available, the error probability can be estimated accurately with the saddlepoint approximation with respect to the number of fading blocks using a numerical method that requires about two orders of magnitude fewer Monte-Carlo samples than with the saddlepoint approximation with respect to the number of channel uses per block.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源