论文标题

部分可观测时空混沌系统的无模型预测

Approximate Gibbsian structure in strongly correlated point fields and generalized Gaussian zero ensembles

论文作者

Gangopadhyay, Ujan, Ghosh, Subhro, Tan, Kin Aun

论文摘要

随机点场中的吉布斯结构一直是研究其空间特性的经典工具。但是,精确的Gibbs属性仅在相对有限的模型类别中可用,并且不能充分解决具有强烈依赖空间结构的许多随机字段。在这项工作中,我们为近似Gibbsian结构提供了一个通用框架,以实现密切相关的随机点字段。这些过程包括表现出强烈的空间刚度的过程,特别是某种单参数的分析高斯零点字段,即$α$ -GAFS。我们的框架需要通过有限的粒子近似值来验证的条件,这是我们称为近似Gibbs特性的现象。我们表明,这些使它们能够将无限体积限制中的空间条件度量与适当的单数歧管支撑的吉布斯型密度进行比较,这是我们称为广义吉布斯特性的现象。我们通过证明广义的Gibbs财产具有对数对$α$ -GAFS的对数潜力,以$α$的任何值来证明我们的方法的范围。这确立了$α$ -gaf零过程的刚度级别,正是$ \ lfloor \ frac {1}α\ rfloor $,在肯定的问题上解决了一个关于具有任何指定刚度水平的点过程的开放问题。对于涉及复杂的多体相互作用的零零零零的过程,我们的结果表明,随机点的局部行为仍然在短范围内表现出2D库仑型排斥。可以利用我们的技术来估计局部扰动下构型的相对能量,这可能对强度相关的随机点场对动力学和随机几何形状产生影响。

Gibbsian structure in random point fields has been a classical tool for studying their spatial properties. However, exact Gibbs property is available only in a relatively limited class of models, and it does not adequately address many random fields with a strongly dependent spatial structure. In this work, we provide a general framework for approximate Gibbsian structure for strongly correlated random point fields. These include processes that exhibit strong spatial rigidity, in particular, a certain one-parameter family of analytic Gaussian zero point fields, namely the $α$-GAFs. Our framework entails conditions that may be verified via finite particle approximations to the process, a phenomenon that we call an approximate Gibbs property. We show that these enable one to compare the spatial conditional measures in the infinite volume limit with Gibbs-type densities supported on appropriate singular manifolds, a phenomenon we refer to as a generalized Gibbs property. We demonstrate the scope of our approach by showing that a generalized Gibbs property holds with a logarithmic pair potential for the $α$-GAFs for any value of $α$. This establishes the level of rigidity of the $α$-GAF zero process to be exactly $\lfloor \frac{1}α \rfloor$, settling in the affirmative an open question regarding the existence of point processes with any specified level of rigidity. For processes such as the zeros of $α$-GAFs, which involve complex, many-body interactions, our results imply that the local behaviour of the random points still exhibits 2D Coulomb-type repulsion in the short range. Our techniques can be leveraged to estimate the relative energies of configurations under local perturbations, with possible implications for dynamics and stochastic geometry on strongly correlated random point fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源