论文标题

$ e_g $轨道哈伯德模型中的轨道液体$ d = \ infty $ dimensions

Orbital liquid in the $e_g$ orbital Hubbard model in $d=\infty$ dimensions

论文作者

Feiner, Louis Felix, Oleś, Andrzej M.

论文摘要

我们证明了三维$ e_g $ orbital哈伯德模型可以推广到任意维度$ d $,并且结果的形式由唯一地确定 (i)保留$ e_g $轨道的两倍变性,以及(ii)立方晶格被变成一个高皮块晶格。虽然局部库仑相互作用$ u $在正交轨道的每个基础上都是不变的,但动能的形式取决于轨道的基础,并以所谓的复合轨道基础采取最对称的形式。从特征上讲,对于此基础,该模型有两个跳跃渠道,一个是轨道味的保存,而第二个是轨道味的非连接渠道。我们表明,非相互作用的电子结构由轨道依赖波载体的两个非平面波段的平面波真实单粒子状态组成。由于后一个功能,每个频段在任何填充物上都不偏振,并且在$ d = \ infty $的情况下具有非高斯州密度。 \ textIt {轨道液体}状态是通过填充这两个频段到相同的费米能来获得的。我们调查了$ e_g $轨道哈伯德模型在限制$ d \ to \ infty $中,对Gutzwiller近似中的现场库仑相互作用$ U $处理,从而确定轨道液体的相关能量和(无效的)para-orbital-para-para--核心状态。 (...)我们表明,轨道液体是$(n,u)$相图中到处都是基态状态,除了在足够大的$ u $上接近半填充,那里有占用真实轨道的铁轨道订单。后一种特征被证明是特定于$ d = \ infty $,这是由于状态密度的指数尾巴而具有数学性质。

We demonstrate that the three-dimensional $e_g$ orbital Hubbard model can be generalized to arbitrary dimension $d$, and that the form of the result is determined uniquely by the requirements that (i) the two-fold degeneracy of the $e_g$ orbital be retained, and (ii) the cubic lattice be turned into a hypercubic lattice. While the local Coulomb interaction $U$ is invariant for each basis of orthogonal orbitals, the form of the kinetic energy depends on the orbital basis and takes the most symmetric form for the so-called complex-orbital basis. Characteristically, with respect to this basis, the model has two hopping channels, one that is orbital-flavor conserving, and a second one that is orbital-flavor non-conserving. We show that the noninteracting electronic structure consists of two nondegenerate bands of plane-wave real-orbital single-particle states for which the orbital depends on the wave vector. Due to the latter feature each band is unpolarized at any filling, and has a non-Gaussian density of states at $d=\infty$. The \textit{orbital liquid} state is obtained by filling these two bands up to the same Fermi energy. We investigate the $e_g$ orbital Hubbard model in the limit $d\to\infty$, treating the on-site Coulomb interaction $U$ within the Gutzwiller approximation, thus determining the correlation energy of the orbital liquid and the (disordered) para-orbital states. (...) We show that the orbital liquid is the ground state everywhere in the $(n,U)$ phase diagram except close to half-filling at sufficiently large $U$, where ferro-orbital order with real orbitals occupied is favored. The latter feature is shown to be specific for $d=\infty$, being of mathematical nature due to the exponential tails in the density of states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源