论文标题
基于查询的实例歧视网络用于关系三重提取
Query-based Instance Discrimination Network for Relational Triple Extraction
论文作者
论文摘要
联合实体和关系提取一直是信息提取领域的核心任务。最近的方法通常考虑从立体角度提取关系三元组,要么为每种关系类型学习特定于关系的标记器或单独的分类器。但是,它们仍然遭受错误传播,关系冗余的障碍以及三元组之间缺乏高级连接。为了解决这些问题,我们提出了一种基于查询的新方法,以构建关系三元组的实例级表示。通过基于度量的查询嵌入和令牌嵌入之间的比较,我们可以在一个步骤中提取所有类型的三元组,从而消除误差传播问题。此外,我们通过对比度学习学习了关系级的实例级表示。这样,关系三元组不仅可以封闭丰富的班级语义,而且可以访问高阶全局连接。实验结果表明,我们所提出的方法在五个广泛使用的基准上实现了最新技术。
Joint entity and relation extraction has been a core task in the field of information extraction. Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective, either learning a relation-specific tagger or separate classifiers for each relation type. However, they still suffer from error propagation, relation redundancy and lack of high-level connections between triples. To address these issues, we propose a novel query-based approach to construct instance-level representations for relational triples. By metric-based comparison between query embeddings and token embeddings, we can extract all types of triples in one step, thus eliminating the error propagation problem. In addition, we learn the instance-level representation of relational triples via contrastive learning. In this way, relational triples can not only enclose rich class-level semantics but also access to high-order global connections. Experimental results show that our proposed method achieves the state of the art on five widely used benchmarks.