论文标题

扭结倍数

Kinks Multiply Mesons

论文作者

Evslin, Jarah, Liu, Hui, Zhang, Baiyang

论文摘要

在(1 + 1) - 维量子量子场理论中,我们计算了介子乘法的前阶概率,这是无弹性散射过程:扭结 +梅森$ \ rightarrow $ kink + kink + 2个介子。我们还计算了相对于最终介子动量的差异概率,以及最终介子中后退回到源的概率。在初始介子的超级限制中,总概率趋向于常数,我们在$ ϕ^4 $模型中进行分析计算。在此命令下,梅森部门自行保存了能源,而即将到来的梅森则对扭结施加了正压力。这与古典田地理论的情况形成鲜明对比,在该理论中,Romanczukiewicz和合作者表明,在存在无反射的纠结的情况下,只允许使用介子融合,从而导致扭结上的辐射压力为负。

In a (1+1)-dimensional scalar quantum field theory, we calculate the leading-order probability of meson multiplication, which is the inelastic scattering process: kink + meson $\rightarrow$ kink + 2 mesons. We also calculate the differential probability with respect to the final meson momenta and the probability that one or two of the final mesons recoils back towards the source. In the ultrarelativistic limit of the initial meson, the total probability tends to a constant, which we calculate analytically in the $ϕ^4$ model. At this order the meson sector conserves energy on its own, while the incoming meson applies a positive pressure to the kink. This is in contrast with the situation in classical field theory, where Romanczukiewicz and collaborators have shown that, in the presence of a reflectionless kink, only meson fusion is allowed, resulting in a negative radiation pressure on the kink.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源