论文标题

$ f $ $ h $的彩虹副本

Rainbow copies of $F$ in families of $H$

论文作者

Gerbner, Dániel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the following problem. How many distinct copies of $H$ can an $n$-vertex graph $G$ have, if $G$ does not contain a rainbow $F$, that is, a copy of $F$ where each edge is contained in a different copy of $H$? The case $H=K_r$ is equivalent to the Turán problem for Berge hypergraphs, which has attracted several researchers recently. We also explore the connection of our problem to the so-called generalized Turán problems. We obtain several exact results. In the particularly interesting symmetric case where $H=F$, we completely solve the case $F$ is the 3-edge path, and asymptitically solve the case $F$ is a book graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源