论文标题

在产品域上解决$ \ dbar $的SUP-NORM估算中解决Kerzman的问题

Solving the Kerzman's problem on the sup-norm estimate for $\dbar$ on product domains

论文作者

Li, Song-Ying

论文摘要

在本文中,作者解决了Kerzman在$ n $ dimensional Complece Space上对cauchy-riemann方程的Sup-Norm估算的长期开放问题。该问题自1971年以来就已经开放。他还在有限的产品域$ω^n $上扩展并解决了该问题,其中$ω$要么简单地与$ c^{1,α} $边界连接,要么满足均匀的外部球条件,并带有分段$ c^1 $边界。

In this paper, the author solves the long term open problem of Kerzman on sup-norm estimate for Cauchy-Riemann equation on polydisc in $n$-dimensional complex space. The problem has been open since 1971. He also extends and solves the problem on a bounded product domain $Ω^n$, where $Ω$ either is simply connected with $C^{1,α}$ boundary or satisfies a uniform exterior ball condition with piecewise $C^1$ boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源