论文标题

物理风格的电网频率建模的机器学习

Physics-inspired machine learning for power grid frequency modelling

论文作者

Kruse, Johannes, Cramer, Eike, Schäfer, Benjamin, Witthaut, Dirk

论文摘要

电力系统的运行受到多种技术,经济和社会因素的影响。社会行为决定了负载模式,电力市场调节发电和依赖天气的可再生能源会引入电力波动。因此,必须将电源系统动力学视为一个非自主系统,其参数随时间而变化。但是,外部驱动因子通常仅在粗尺度上可用,而动态系统参数的实际依赖性通常未知。在这里,我们提出了一个由物理启发的机器学习模型,该模型弥合了大规模驱动因素和电力系统的短期动力学之间的差距。整合了随机微分方程和人工神经网络,我们在欧洲大陆构建了功率电网频率动力学的概率模型。它的概率预测优于每日平均概况,这是一个重要的基准。使用集成模型,我们从数据中识别并解释了动力学系统的参数,该参数揭示了它们的强大时间依赖性及其与外部驱动因素(例如风能进液和快速生成坡道)的关系。最后,我们从模型中生成合成时间序列,该时间序列成功地重现了网格频率的中心特征,例如其重尾分布。总而言之,我们的工作强调了建模电力系统动力学作为具有内在动力学和外部驱动因素的随机非自治系统的重要性。

The operation of power systems is affected by diverse technical, economic and social factors. Social behaviour determines load patterns, electricity markets regulate the generation and weather-dependent renewables introduce power fluctuations. Thus, power system dynamics must be regarded as a non-autonomous system whose parameters vary strongly with time. However, the external driving factors are usually only available on coarse scales and the actual dependencies of the dynamic system parameters are generally unknown. Here, we propose a physics-inspired machine learning model that bridges the gap between large-scale drivers and short-term dynamics of the power system. Integrating stochastic differential equations and artificial neural networks, we construct a probabilistic model of the power grid frequency dynamics in Continental Europe. Its probabilistic prediction outperforms the daily average profile, which is an important benchmark. Using the integrated model, we identify and explain the parameters of the dynamical system from the data, which reveals their strong time-dependence and their relation to external drivers such as wind power feed-in and fast generation ramps. Finally, we generate synthetic time series from the model, which successfully reproduce central characteristics of the grid frequency such as their heavy-tailed distribution. All in all, our work emphasises the importance of modelling power system dynamics as a stochastic non-autonomous system with both intrinsic dynamics and external drivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源