论文标题
在电子商务平台上广告的利润最大化策略
A Profit-Maximizing Strategy for Advertising on the e-Commerce Platforms
论文作者
论文摘要
在线广告管理平台在电子商务供应商/广告商中越来越流行,提供了一种简化的方法来吸引目标客户。尽管它具有优势,但正确配置广告策略仍然是在线供应商,尤其是资源有限的供应商的挑战。无效的策略通常会导致单击``'''的单击'',从而导致与销售增长相比,广告费用不成比例。在本文中,我们提出了一种针对在线广告的选择的新颖利润最大化策略。提出的模型旨在找到最佳功能集,以最大程度地将目标受众转换为实际买家的概率。我们通过将其重新提出为多项选择背包问题(MCKP)来解决优化挑战。我们进行了一项实证研究,其中包含来自Tmall的现实世界数据,以表明我们提出的方法可以通过预算限制有效地优化广告策略。
The online advertising management platform has become increasingly popular among e-commerce vendors/advertisers, offering a streamlined approach to reach target customers. Despite its advantages, configuring advertising strategies correctly remains a challenge for online vendors, particularly those with limited resources. Ineffective strategies often result in a surge of unproductive ``just looking'' clicks, leading to disproportionately high advertising expenses comparing to the growth of sales. In this paper, we present a novel profit-maximing strategy for targeting options of online advertising. The proposed model aims to find the optimal set of features to maximize the probability of converting targeted audiences into actual buyers. We address the optimization challenge by reformulating it as a multiple-choice knapsack problem (MCKP). We conduct an empirical study featuring real-world data from Tmall to show that our proposed method can effectively optimize the advertising strategy with budgetary constraints.