论文标题
算术上的cohen-二线捆绑包在皮卡德等均质品种上
Arithmetically Cohen--Macaulay bundles on homogeneous varieties of Picard rank one
论文作者
论文摘要
在本文中,我们研究了算术上的cohen--macaulay(ACM)捆绑包,上面是同质品种$ g/p $。的确,我们表征了Picard $ g/p $在最高权重方面排名第一的ACM捆绑包。 This is a generalization of the result on $G/P$ of classical types presented by Costa and Miró-Roig for type $A$, and Du, Fang, and Ren for types $B,C$ and $D$.结果,我们证明,在所有这样的$ g/p $上都存在有限的许多不可约的同质ACM捆绑包,直到扭曲线束。此外,我们在特定类型的特定类型类型的特定均质品种(例如Cayley Plane和Freudenthal品种)上得出了不可还原均质ACM捆绑的最高权重列表。
In this paper, we study arithmetically Cohen--Macaulay (ACM) bundles on homogeneous varieties $G/P$. Indeed we characterize the homogeneous ACM bundles on $G/P$ of Picard rank one in terms of highest weights. This is a generalization of the result on $G/P$ of classical types presented by Costa and Miró-Roig for type $A$, and Du, Fang, and Ren for types $B,C$ and $D$. As a consequence we prove that only finitely many irreducible homogeneous ACM bundles, up to twisting line bundles, exist over all such $G/P$. Moreover, we derive the list of the highest weights of the irreducible homogeneous ACM bundles on particular homogeneous varieties of exceptional types such as the Cayley Plane and the Freudenthal variety.