论文标题

使用神经网络的国家依赖资产分配

State-dependent Asset Allocation Using Neural Networks

论文作者

Bradrania, Reza, Neghab, Davood Pirayesh

论文摘要

市场状况的变化给投资者带来挑战,因为它们会导致绩效偏离长期平均值和协方差预测的范围。条件资产分配策略的目的是通过调整投资组合分配以对冲投资机会集的变化来克服这一问题。本文提出了一种基于机器学习的有条件资产分配的新方法。它分析了历史市场状态和资产回报,并在新观察结果可用时确定了最佳的投资组合选择。在这种方法中,我们将状态变量与投资组合权重直接相关,而不是首先对返回分布进行建模并随后估算投资组合选择。该方法捕获了状态(预测)变量和投资组合权重之间的非线性,而无需假设回报和其他数据的任何特定分布,而无需拟合具有固定数量预测变量的模型,而无需估计任何参数。股票和债券指数组合的经验结果表明,与传统方法相比,所提出的方法产生了更有效的结果,并且在不同样本周期内使用不同的目标函数方面具有强大的效果。

Changes in market conditions present challenges for investors as they cause performance to deviate from the ranges predicted by long-term averages of means and covariances. The aim of conditional asset allocation strategies is to overcome this issue by adjusting portfolio allocations to hedge changes in the investment opportunity set. This paper proposes a new approach to conditional asset allocation that is based on machine learning; it analyzes historical market states and asset returns and identifies the optimal portfolio choice in a new period when new observations become available. In this approach, we directly relate state variables to portfolio weights, rather than firstly modeling the return distribution and subsequently estimating the portfolio choice. The method captures nonlinearity among the state (predicting) variables and portfolio weights without assuming any particular distribution of returns and other data, without fitting a model with a fixed number of predicting variables to data and without estimating any parameters. The empirical results for a portfolio of stock and bond indices show the proposed approach generates a more efficient outcome compared to traditional methods and is robust in using different objective functions across different sample periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源