论文标题

脱钩的跨尺度跨视图互动,以增强立体声图像在黑暗中

Decoupled Cross-Scale Cross-View Interaction for Stereo Image Enhancement in The Dark

论文作者

Zheng, Huan, Zhang, Zhao, Fan, Jicong, Hong, Richang, Yang, Yi, Yan, Shuicheng

论文摘要

低光立体声图像增强(LLSIE)是一项相对较新的任务,可以增强在深色状态下捕获的视觉上令人不愉快的立体声图像的质量。但是,当前的方法在细节恢复和照明调整方面达到了较低的性能。我们发现这是因为:1)单尺度间相互交互不足,使得交叉视图提示无法完全利用; 2)缺乏远程依赖性导致无法处理由照明降解引起的空间长距离效应。为了减轻此类局限性,我们提出了一个称为脱钩的跨尺度跨视图网络(DCI-NET)的LLSIE模型。具体而言,我们提出了一个脱钩的交互模块(DIM),该模块旨在进行足够的双视信息交互。 DIM将双视信息交换分解为发现多尺度的跨视图相关性,并进一步探索跨尺度信息流。此外,我们提出了一个空间通道信息挖掘块(SIMB),以进行视频内特征提取,并且好处是双重的。一个是建立空间长距离关系的远程依赖捕获,另一个是扩展的通道信息改进,从而增强了通道维度中的信息流。 Flickr1024,Kitti 2012,Kitti 2015和Middlebury数据集的广泛实验表明,与其他相关方法相比,我们的方法获得了更好的照明调整和细节恢复,并且可以实现SOTA性能。我们的代码,数据集和模型将公开可用。

Low-light stereo image enhancement (LLSIE) is a relatively new task to enhance the quality of visually unpleasant stereo images captured in dark condition. However, current methods achieve inferior performance on detail recovery and illumination adjustment. We find it is because: 1) the insufficient single-scale inter-view interaction makes the cross-view cues unable to be fully exploited; 2) lacking long-range dependency leads to the inability to deal with the spatial long-range effects caused by illumination degradation. To alleviate such limitations, we propose a LLSIE model termed Decoupled Cross-scale Cross-view Interaction Network (DCI-Net). Specifically, we present a decoupled interaction module (DIM) that aims for sufficient dual-view information interaction. DIM decouples the dual-view information exchange into discovering multi-scale cross-view correlations and further exploring cross-scale information flow. Besides, we present a spatial-channel information mining block (SIMB) for intra-view feature extraction, and the benefits are twofold. One is the long-range dependency capture to build spatial long-range relationship, and the other is expanded channel information refinement that enhances information flow in channel dimension. Extensive experiments on Flickr1024, KITTI 2012, KITTI 2015 and Middlebury datasets show that our method obtains better illumination adjustment and detail recovery, and achieves SOTA performance compared to other related methods. Our codes, datasets and models will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源