论文标题
从稀疏近似的角度从批处理主动学习
Batch Active Learning from the Perspective of Sparse Approximation
论文作者
论文摘要
主动学习通过利用机器学习剂与人类注释者之间的相互作用来实现有效的模型培训。我们研究并提出了一个新颖的框架,该框架从稀疏近似的角度来制定了批处理主动学习。我们的主动学习方法旨在从未标记的数据库中找到一个信息的子集,以使相应的训练损失函数近似于其完整的数据池对应物。我们将框架意识到稀疏性约束的不连续优化问题,这明确平衡了大规模应用的不确定性和表示形式,并且可以通过贪婪或近端迭代的硬阈值算法来解决。所提出的方法可以适应各种环境,包括贝叶斯和非贝叶斯神经网络。数值实验表明,我们的工作在不同的情况下具有较低的计算复杂性,可以实现竞争性能。
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators. We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective. Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart. We realize the framework as sparsity-constrained discontinuous optimization problems, which explicitly balance uncertainty and representation for large-scale applications and could be solved by greedy or proximal iterative hard thresholding algorithms. The proposed method can adapt to various settings, including both Bayesian and non-Bayesian neural networks. Numerical experiments show that our work achieves competitive performance across different settings with lower computational complexity.