论文标题
可调式Moiré异质结构的可伸缩范德华的外观
Scalable van der Waals epitaxy of tunable moiré heterostructures
论文作者
论文摘要
在Moiré超级晶格中发现的独特物理学对未来的量子技术有很大的希望。但是,扭曲的构型通常在热力学上是不利的,这使得直接生长中的精确扭曲角度控制令人难以置信。虽然可以合成基于晶格不匹配的层(例如WSE2/WS2)的旋转对齐的Moiré超晶格,但它们缺乏Moiré时期的关键可调节性,而Moiré形成机制并不理解。在这里,我们报告了稳定的莫伊尔人的可扩展性,热力学驱动的范德华的外观,可调周期为10至45纳米,基于两个WSSE层的晶格不匹配工程,具有可调节的Chalcogens比率的两个WSSE层。与传统的外观不匹配引起的压力阻碍了高质量的生长相反,我们揭示了散装应力在Moiré形成中的关键作用,以及其与边缘应力在塑造Moiré生长模式中的独特相互作用。此外,合成的超晶格显示可调层和MoiréStralayer激子。我们的研究揭示了Moiré合成的独特外观科学,并为基于Moiré的技术奠定了基础。
The unique physics found in moiré superlattices of twisted or lattice-mismatched atomic layers hold great promise for future quantum technologies. However, twisted configurations are typically thermodynamically unfavorable, making the accurate twist angle control in direct growth implausible. While rotationally aligned moiré superlattices based on lattice-mismatched layers such as WSe2/WS2 can be synthesized, they lack the critical tunability of the moiré period and the moiré formation mechanisms are not well-understood. Here, we report the scalable, thermodynamically driven van der Waals epitaxy of stable moirés with tunable period from 10 to 45 nanometers, based on lattice mismatch engineering in two WSSe layers with adjustable chalcogens ratios. Contrarily to conventional epitaxy, where lattice mismatch induced stress hinders high-quality growth, we reveal the key role of bulk stress in moiré formation, as well as its unique interplay with edge stress in shaping the moiré growth modes. Moreover, the synthesized superlattices display tunable interlayer, and moiré intralayer excitons. Our studies unveil the unique epitaxial science of moiré synthesis and lay the foundations for moiré-based technologies.