论文标题
更快地刺激深卷积神经网络的方法
A Faster Approach to Spiking Deep Convolutional Neural Networks
论文作者
论文摘要
尖峰神经网络(SNN)比当前的深神经网络更接近大脑。它们的低功耗和样品效率使这些网络变得有趣。最近,已经提出了一些深卷积尖峰神经网络。这些网络旨在提高生物学上的合理性,同时创建强大的工具,以应用于机器学习任务。在这里,我们建议基于以前的工作以提高网络运行时和准确性的网络结构。对网络的改进包括仅将训练迭代降低到一次,使用主成分分析(PCA)尺寸减小,权重量化,分类的定时输出以及更好的超参数调整。此外,更改预处理步骤,以允许对彩色图像进行处理,而不仅仅是黑白以提高准确性。提出的结构将运行时分组化,并引入了深层卷积SNN的有效方法。
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks. Their low power consumption and sample efficiency make these networks interesting. Recently, several deep convolutional spiking neural networks have been proposed. These networks aim to increase biological plausibility while creating powerful tools to be applied to machine learning tasks. Here, we suggest a network structure based on previous work to improve network runtime and accuracy. Improvements to the network include reducing training iterations to only once, effectively using principal component analysis (PCA) dimension reduction, weight quantization, timed outputs for classification, and better hyperparameter tuning. Furthermore, the preprocessing step is changed to allow the processing of colored images instead of only black and white to improve accuracy. The proposed structure fractionalizes runtime and introduces an efficient approach to deep convolutional SNNs.