论文标题
球体和相变的插值不平等:刚度,对称性和对称性破裂
Interpolation inequalities on the sphere and phase transition: rigidity, symmetry and symmetry breaking
论文作者
论文摘要
本文致力于研究与一个大型Gagliardo-Nirenberg-Sobolev插值不平等的大家族,具体取决于一个参数。我们表征对称性和对称性破坏机制,其相变可能是第一阶或二阶。我们建立了各种新的结果,并研究了欧拉 - 拉格朗日方程的解决方案分支的定性特性。
This paper is devoted to the study of phase transitions associated to a large family of Gagliardo-Nirenberg-Sobolev interpolation inequalities on the sphere depending on one parameter. We characterize symmetry and symmetry breaking regimes, with a phase transition that can be of first or second order. We establish various new results and study the qualitative properties of the branches of solutions to the Euler-Lagrange equations.