论文标题
在以人为本的物联网中实现实时分析的隐私工程
Towards Privacy Engineering for Real-Time Analytics in the Human-Centered Internet of Things
论文作者
论文摘要
大数据应用程序为许多紧急社会挑战提供了智能解决方案,例如医疗保健,交通协调,能源管理等。这些应用程序的基本前提是“数据越多,越好”。重点通常在于在公共领域中传达基础架构,从而产生越来越多的数据。但是,任何智能手机和智能手表所有者都可以是有价值数据的连续来源,并为许多有用的大数据应用程序做出了贡献。但是,此类数据可以揭示许多敏感信息,例如当前位置或此类设备所有者的心率。保护个人数据在我们的社会中很重要,例如在欧盟一般数据保护法规(GDPR)中表现出来。但是,很难将隐私保护和有用的大数据应用程序汇集在一起,尤其是在以人为本的物联网中。实施适当的隐私保护需要通常不在数据分析师和大数据开发人员的重点的技能。因此,如果有疑问是否会得到适当的保护,许多人倾向于没有共享他们的所有数据。 “全或一无所有”的方法之间存在出色的隐私解决方案。例如,而不是不断发布个人的当前位置,可能会汇总此数据,而仅发布有关城市某个地区有多少个人的信息。因此,没有透露个人数据,而保留了某些应用程序(例如流量协调)的有用信息。鹦鹉项目的目标是为利用此“中间立场”的实时数据分析应用程序提供工具。只需需要数据分析师即可指定其数据需求,最终用户可以选择其数据的隐私要求以及他们想与之共享数据的应用程序和最终用户。
Big data applications offer smart solutions to many urgent societal challenges, such as health care, traffic coordination, energy management, etc. The basic premise for these applications is "the more data the better". The focus often lies on sensing infrastructures in the public realm that produce an ever-increasing amount of data. Yet, any smartphone and smartwatch owner could be a continuous source of valuable data and contribute to many useful big data applications. However, such data can reveal a lot of sensitive information, like the current location or the heart rate of the owner of such devices. Protection of personal data is important in our society and for example manifested in the EU General Data Protection Regulation (GDPR). However, privacy protection and useful big data applications are hard to bring together, particularly in the human-centered IoT. Implementing proper privacy protection requires skills that are typically not in the focus of data analysts and big data developers. Thus, many individuals tend to share none of their data if in doubt whether it will be properly protected. There exist excellent privacy solutions between the "all or nothing" approach. For example, instead of continuously publishing the current location of individuals one might aggregate this data and only publish information of how many individuals are in a certain area of the city. Thus, personal data is not revealed, while useful information for certain applications like traffic coordination is retained. The goal of the Parrot project is to provide tools for real-time data analysis applications that leverage this "middle ground". Data analysts should only be required to specify their data needs, and end-users can select the privacy requirements for their data as well as the applications and end-users they want to share their data with.