论文标题
晶格同源性,形式和管道L空间链接
Lattice homology, formality, and plumbed L-space links
论文作者
论文摘要
我们为管道链路定义了一个链路晶体综合体,概括了Ozsváth,Stipsicz和Szabó,以及Gorsky和Némethi的结构。我们证明,对于3 spheres中的所有管道链接,链接晶格复合综合体等于链接浮子复合物作为$ a_ \ infty $ -MODULE。此外,我们证明了钢管L空间链路的链路浮子复合物是其同源性的免费分辨率。结果,我们提供了一种算法来计算从其多变量的亚历山大多项式中计算钢管L空间链路的链路浮子复合物,尤其是代数链路。
We define a link lattice complex for plumbed links, generalizing constructions of Ozsváth, Stipsicz and Szabó, and of Gorsky and Némethi. We prove that for all plumbed links in rational homology 3-spheres, the link lattice complex is homotopy equivalent to the link Floer complex as an $A_\infty$-module. Additionally, we prove that the link Floer complex of a plumbed L-space link is a free resolution of its homology. As a consequence, we give an algorithm to compute the link Floer complexes of plumbed L-space links, in particular of algebraic links, from their multivariable Alexander polynomial.