论文标题
部分可观测时空混沌系统的无模型预测
Vision Transformer for Adaptive Image Transmission over MIMO Channels
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper presents a vision transformer (ViT) based joint source and channel coding (JSCC) scheme for wireless image transmission over multiple-input multiple-output (MIMO) systems, called ViT-MIMO. The proposed ViT-MIMO architecture, in addition to outperforming separation-based benchmarks, can flexibly adapt to different channel conditions without requiring retraining. Specifically, exploiting the self-attention mechanism of the ViT enables the proposed ViT-MIMO model to adaptively learn the feature mapping and power allocation based on the source image and channel conditions. Numerical experiments show that ViT-MIMO can significantly improve the transmission quality cross a large variety of scenarios, including varying channel conditions, making it an attractive solution for emerging semantic communication systems.