论文标题
部分可观测时空混沌系统的无模型预测
The center of Hecke algebras of types
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We describe the center of the Hecke algebra of a type attached to a Bernstein block under some hypothesis. When $\bf G$ is a connected reductive group over non-archimedean local field $F$ that splits over a tamely ramified extension of $F$ and the residue characteristic of $F$ does not divide the order of the absolute Weyl group of $\bf G$, the works of Kim-Yu and Fintzen associate a type to each Bernstein block and our hypothesis is satisfied for such types. We use our results to give a description of the Bernstein center of the Hecke algebra $\mathcal{H}({\bf G } (F),K)$ when $K$ belongs to a nice family of compact open subgroups of ${\bf G}(F)$ (which includes all the Moy-Prasad filtrations of an Iwahori subgroup) via the theory of types.