论文标题

SCOREMIX:具有有限数据的培训gan的可扩展增强策略

ScoreMix: A Scalable Augmentation Strategy for Training GANs with Limited Data

论文作者

Cao, Jie, Luo, Mandi, Yu, Junchi, Yang, Ming-Hsuan, He, Ran

论文摘要

当有限的培训数据可用时,生成的对抗网络(GAN)通常会遭受过度拟合。为了促进GAN培训,当前的方法建议使用特定数据的增强技术。尽管有效,这些方法很难扩展到实际应用。在这项工作中,我们提出了Scoremix,这是一种针对各种图像综合任务的新颖且可扩展的数据增强方法。我们首先使用真实样品的凸组合产生增强样品。然后,我们通过最小化数据分数的规范,即对数密度函数的梯度来优化增强样品。此过程强制执行靠近数据歧管的增强样品。为了估计分数,我们训练一个具有多尺度得分匹配的深度估计网络。对于不同的图像综合任务,我们使用不同的数据训练分数估计网络。我们不需要对网络体系结构的超参数或修改进行调整。 SCOREMIX方法有效地增加了数据的多样性并减少了过度拟合的问题。此外,它可以轻松地将其纳入具有较小修改的现有GAN模型中。对许多任务的实验结果表明,配备了SCOREX方法的GAN模型可实现重大改进。

Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available. To facilitate GAN training, current methods propose to use data-specific augmentation techniques. Despite the effectiveness, it is difficult for these methods to scale to practical applications. In this work, we present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks. We first produce augmented samples using the convex combinations of the real samples. Then, we optimize the augmented samples by minimizing the norms of the data scores, i.e., the gradients of the log-density functions. This procedure enforces the augmented samples close to the data manifold. To estimate the scores, we train a deep estimation network with multi-scale score matching. For different image synthesis tasks, we train the score estimation network using different data. We do not require the tuning of the hyperparameters or modifications to the network architecture. The ScoreMix method effectively increases the diversity of data and reduces the overfitting problem. Moreover, it can be easily incorporated into existing GAN models with minor modifications. Experimental results on numerous tasks demonstrate that GAN models equipped with the ScoreMix method achieve significant improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源