论文标题
将宇宙剪切数据与相关照片结合 - $ z $不确定性:DESY1和HSC-DR1的约束
Combining cosmic shear data with correlated photo-$z$ uncertainties: constraints from DESY1 and HSC-DR1
论文作者
论文摘要
源红移分布的准确校准$ p(z)$是分析宇宙剪切数据的关键方面。这是一种或另一种方式,需要使用光谱或高质量的光度样品。但是,获得与弱透镜目录深度相匹配的颜色完整光谱样品的困难意味着,对不同宇宙剪切数据集的分析通常使用相同的样品进行红移校准。这引入了统计和系统不确定性的来源,这些统计和系统不确定性在不同的弱透镜数据集中高度相关,并且必须准确地表征和传播,以便从其组合中获得强大的宇宙学约束。在本文中,我们介绍了一种量化和传播两个不同调查中源红移分布的不确定性的方法,共享了相同的校准样本。该方法基于$ p(z)$统计不确定性的近似分析边缘化和残留系统学的边缘化。我们将此方法应用于DESY1数据发布和HSC-DR1数据的宇宙剪切数据的组合分析,并使用COSMOS 30波段目录作为常见的红移校准样本。我们发现,尽管在两个样本的红移分布的不确定性中存在显着相关性,但这并没有显着改变对宇宙学参数的最终约束。对于宇宙30波段光度红移中的误差,残留系统不确定性的影响也是如此。此外,我们表明这些效果在阶段IV数据集中仍然可以忽略不计。最后,DESY1和HSC-DR1的组合使我们能够将``块状''参数限制为$ s_8 = 0.768^{+0.021} _ { - 0.017} $。这对应于$ \ sim \ sqrt {2} $相对于DES或HSC的不确定性改进。
An accurate calibration of the source redshift distribution $p(z)$ is a key aspect in the analysis of cosmic shear data. This, one way or another, requires the use of spectroscopic or high-quality photometric samples. However, the difficulty to obtain colour-complete spectroscopic samples matching the depth of weak lensing catalogs means that the analyses of different cosmic shear datasets often use the same samples for redshift calibration. This introduces a source of statistical and systematic uncertainty that is highly correlated across different weak lensing datasets, and which must be accurately characterised and propagated in order to obtain robust cosmological constraints from their combination. In this paper we introduce a method to quantify and propagate the uncertainties on the source redshift distribution in two different surveys sharing the same calibrating sample. The method is based on an approximate analytical marginalisation of the $p(z)$ statistical uncertainties and the correlated marginalisation of residual systematics. We apply this method to the combined analysis of cosmic shear data from the DESY1 data release and the HSC-DR1 data, using the COSMOS 30-band catalog as a common redshift calibration sample. We find that, although there is significant correlation in the uncertainties on the redshift distributions of both samples, this does not change the final constraints on cosmological parameters significantly. The same is true also for the impact of residual systematic uncertainties from the errors in the COSMOS 30-band photometric redshifts. Additionally, we show that these effects will still be negligible in Stage-IV datasets. Finally, the combination of DESY1 and HSC-DR1 allows us to constrain the ``clumpiness'' parameter to $S_8 = 0.768^{+0.021}_{-0.017}$. This corresponds to a $\sim\sqrt{2}$ improvement in uncertainties with respect to either DES or HSC alone.