论文标题

翻转:联邦学习的后门缓解措施的可证明的防御框架

FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning

论文作者

Zhang, Kaiyuan, Tao, Guanhong, Xu, Qiuling, Cheng, Siyuan, An, Shengwei, Liu, Yingqi, Feng, Shiwei, Shen, Guangyu, Chen, Pin-Yu, Ma, Shiqing, Zhang, Xiangyu

论文摘要

联合学习(FL)是一个分布式学习范式,使不同的各方能够一起训练模型以寻求高质量和强大的隐私保护。在这种情况下,个别参与者可能会因中毒数据(或梯度)而受到妥协并进行后门攻击。现有关于强大聚合和经过认证的FL鲁棒性的工作并不研究良性客户如何影响全球模型(以及恶意客户)。在这项工作中,我们从理论上分析了在这种情况下的跨凝结损失,攻击成功率和清洁准确性之间的联系。此外,我们提出了基于触发逆向工程的防御,并表明我们的方法可以通过保证(即降低攻击成功率)来提高稳健性,而不会影响良性的准确性。我们在不同数据集中进行全面的实验和攻击设置。我们对八种相互竞争的SOTA防御方法的结果表明,我们方法在单枪和连续的FL后门攻击中的经验优势。代码可从https://github.com/kaiyuanzh/flip获得。

Federated Learning (FL) is a distributed learning paradigm that enables different parties to train a model together for high quality and strong privacy protection. In this scenario, individual participants may get compromised and perform backdoor attacks by poisoning the data (or gradients). Existing work on robust aggregation and certified FL robustness does not study how hardening benign clients can affect the global model (and the malicious clients). In this work, we theoretically analyze the connection among cross-entropy loss, attack success rate, and clean accuracy in this setting. Moreover, we propose a trigger reverse engineering based defense and show that our method can achieve robustness improvement with guarantee (i.e., reducing the attack success rate) without affecting benign accuracy. We conduct comprehensive experiments across different datasets and attack settings. Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks. Code is available at https://github.com/KaiyuanZh/FLIP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源