论文标题

基于gan的面部属性操纵

GAN-based Facial Attribute Manipulation

论文作者

Liu, Yunfan, Li, Qi, Deng, Qiyao, Sun, Zhenan, Yang, Ming-Hsuan

论文摘要

面部属性操纵(FAM)的目的是在美学上修改给定的面部图像以渲染所需的属性,由于其从数字娱乐到生物识别法医学的广泛实践应用,因此受到了极大的关注。在过去的十年中,随着生成对抗网络(GAN)在综合现实图像中取得的显着成功,已经提出了许多基于GAN的模型来解决以各种问题制定方法和指导信息表示形式来解决FAM。本文介绍了对基于GAN的FAM方法的全面调查,重点是总结其主要动机和技术细节。该调查的主要内容包括:(i)与FAM相关的研究背景和基本概念的介绍,(ii)对三个主要类别中基于GAN的FAM方法进行系统的综述,以及(iii)对FAM方法,开放问题和未来研究指导的重要属性的深入讨论。这项调查不仅为该领域的新研究人员建立了一个很好的起点,而且还可以作为视觉社区的参考。

Facial Attribute Manipulation (FAM) aims to aesthetically modify a given face image to render desired attributes, which has received significant attention due to its broad practical applications ranging from digital entertainment to biometric forensics. In the last decade, with the remarkable success of Generative Adversarial Networks (GANs) in synthesizing realistic images, numerous GAN-based models have been proposed to solve FAM with various problem formulation approaches and guiding information representations. This paper presents a comprehensive survey of GAN-based FAM methods with a focus on summarizing their principal motivations and technical details. The main contents of this survey include: (i) an introduction to the research background and basic concepts related to FAM, (ii) a systematic review of GAN-based FAM methods in three main categories, and (iii) an in-depth discussion of important properties of FAM methods, open issues, and future research directions. This survey not only builds a good starting point for researchers new to this field but also serves as a reference for the vision community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源