论文标题

部分可观测时空混沌系统的无模型预测

Towards Energy-Efficient, Low-Latency and Accurate Spiking LSTMs

论文作者

Datta, Gourav, Deng, Haoqin, Aviles, Robert, Beerel, Peter A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Spiking Neural Networks (SNNs) have emerged as an attractive spatio-temporal computing paradigm for complex vision tasks. However, most existing works yield models that require many time steps and do not leverage the inherent temporal dynamics of spiking neural networks, even for sequential tasks. Motivated by this observation, we propose an \rev{optimized spiking long short-term memory networks (LSTM) training framework that involves a novel ANN-to-SNN conversion framework, followed by SNN training}. In particular, we propose novel activation functions in the source LSTM architecture and judiciously select a subset of them for conversion to integrate-and-fire (IF) activations with optimal bias shifts. Additionally, we derive the leaky-integrate-and-fire (LIF) activation functions converted from their non-spiking LSTM counterparts which justifies the need to jointly optimize the weights, threshold, and leak parameter. We also propose a pipelined parallel processing scheme which hides the SNN time steps, significantly improving system latency, especially for long sequences. The resulting SNNs have high activation sparsity and require only accumulate operations (AC), in contrast to expensive multiply-and-accumulates (MAC) needed for ANNs, except for the input layer when using direct encoding, yielding significant improvements in energy efficiency. We evaluate our framework on sequential learning tasks including temporal MNIST, Google Speech Commands (GSC), and UCI Smartphone datasets on different LSTM architectures. We obtain test accuracy of 94.75% with only 2 time steps with direct encoding on the GSC dataset with 4.1x lower energy than an iso-architecture standard LSTM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源