论文标题

通过不规则的多模式电子健康记录建模来改善医疗预测

Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling

论文作者

Zhang, Xinlu, Li, Shiyang, Chen, Zhiyu, Yan, Xifeng, Petzold, Linda

论文摘要

重症监护病房(ICU)患者的健康状况通过电子健康记录(EHR)监测,该记录由数值时间序列和冗长的临床注意序列组成,均以不规则的时间间隔进行。在每种方式中处理这种不规则性,并将不规则性纳入多模式表示以改善医学预测,这是一个具有挑战性的问题。我们的方法首先通过(1)通过(1)通过门控机制将手工制作的插入嵌入到学习的插值嵌入中,并通过(2)将一系列临床注意表示作为多变量不规则时间序列和通过时间注意机制来解决多元不规则的不规则时间序列来解决每种单一模式的不规则性,通过(1)对学习的插入式嵌入到学习的插值嵌入中。我们进一步将多模式融合的不规则性与跨时间步骤的相互交织的注意机制相结合。据我们所知,这是第一项彻底模拟多模式中不规则性的工作,以改善医学预测。我们针对两个医疗预测任务的建议方法始终优于每种单一模式和多模式融合场景中最先进的基线(SOTA)基准。具体而言,我们观察到时间序列,临床音符和多模式融合的F1中的6.5 \%,3.6 \%和4.3 \%的相对改善。这些结果证明了我们方法的有效性以及考虑多模式EHR中不规则性的重要性。

Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at irregular time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5\%, 3.6\%, and 4.3\% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源