论文标题

Videopipe 2022挑战:城市管道检查的现实世界视频理解

VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection

论文作者

Liu, Yi, Zhang, Xuan, Li, Ying, Liang, Guixin, Jiang, Yabing, Qiu, Lixia, Tang, Haiping, Xie, Fei, Yao, Wei, Dai, Yi, Qiao, Yu, Wang, Yali

论文摘要

视频理解是计算机视觉中的重要问题。当前,这项研究中研究的任务是人类行动识别,其中剪辑是从长视频中手动修剪的,每个剪辑都假定了一类人类行动。但是,我们可能在工业应用中面临更复杂的方案。例如,在现实世界中的城市管道系统中,异常缺陷是细粒度的,多标记的,与域相关的。要正确识别它们,我们需要了解详细的视频内容。因此,我们建议通过从传统的行动识别到工业异常分析的转变来推进视频理解的研究领域。特别是,我们介绍了两个高质量的视频基准,即QV-Pipe和CCTV-Pipe,以在现实世界中的城市管道系统中进行异常检查。基于这些新数据集,我们将举办两项竞赛,包括(1)QV-Pipe上的视频缺陷分类以及(2)CCTV-Pipe上的时间缺陷定位。在本报告中,我们描述了这些基准测试的详细信息,竞争轨道的问题定义,评估指标以及结果摘要。我们希望,这场比赛将为智慧城市及其他地区的视频理解带来新的机会和挑战。可以在https://videopipe.github.io中找到我们的Videopipe挑战的详细信息。

Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single class of human action is assumed for each clip. However, we may face more complicated scenarios in the industrial applications. For example, in the real-world urban pipe system, anomaly defects are fine-grained, multi-labeled, domain-relevant. To recognize them correctly, we need to understand the detailed video content. For this reason, we propose to advance research areas of video understanding, with a shift from traditional action recognition to industrial anomaly analysis. In particular, we introduce two high-quality video benchmarks, namely QV-Pipe and CCTV-Pipe, for anomaly inspection in the real-world urban pipe systems. Based on these new datasets, we will host two competitions including (1) Video Defect Classification on QV-Pipe and (2) Temporal Defect Localization on CCTV-Pipe. In this report, we describe the details of these benchmarks, the problem definitions of competition tracks, the evaluation metric, and the result summary. We expect that, this competition would bring new opportunities and challenges for video understanding in smart city and beyond. The details of our VideoPipe challenge can be found in https://videopipe.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源