论文标题
二次链接学位
The quadratic linking degree
论文作者
论文摘要
通过使用动机同义理论,我们将代数几何形状中的对应物引入了定向链接及其链接数字。在构建了(环境)二次链接度 - 我们对链接数的类似物,该链接数在地面的Witt组中占据了值,并探索了其某些属性,我们提供了一种明确计算它的方法。我们在一个示例家族中说明了这种方法,这些示例是圆环链接的类似物,尤其是霍普夫和所罗门链接的类似物。
By using motivic homotopy theory, we introduce a counterpart in algebraic geometry to oriented links and their linking numbers. After constructing the (ambient) quadratic linking degree -- our analogue of the linking number which takes values in the Witt group of the ground field -- and exploring some of its properties, we give a method to explicitly compute it. We illustrate this method on a family of examples which are analogues of torus links, in particular of the Hopf and Solomon links.