论文标题

整个空间反事实学习:调整,分析属性和工业应用

Entire Space Counterfactual Learning: Tuning, Analytical Properties and Industrial Applications

论文作者

Wang, Hao, Chen, Zhichao, Fan, Jiajun, Huang, Yuxin, Liu, Weiming, Liu, Xinggao

论文摘要

作为建立有效推荐系统的基础研究问题,点击转换率(CVR)估计长期以来一直受到样本选择偏见和数据稀疏问题的困扰。为了解决数据稀疏问题,基于整个空间多任务模型的普遍方法利用了用户操作的顺序模式,即曝光$ \ rightarrow $ \ rightarrow $ \ rightarrow $ \ rightarrow $转换$转换以构建辅助学习任务。但是,他们仍然无法保证CVR估计的无偏见。从理论上讲,本文证明了整个空间多任务模型的两个缺陷:(1)用于CVR估计的固有估计偏置(IEB),其中CVR估计本质上高于地面真相; (2)CTCVR估计的潜在独立性优先级(PIP),其中从单击到转换的因果关系可能会被忽略。本文进一步提出了一种名为“整个空间反事实多任务模型”(ESCM $^2 $)的原则方法,该方法采用了反事实的风险最小化器,同时处理IEB和PIP问题。为了证明所提出的方法的有效性,本文探讨了其在实践中的参数调整,得出其分析性能,并在工业CVR估计中展示了其有效性,其中ESCM $^2 $可以有效地减轻固有的IEB和PIP问题和PIP问题,并提出了基本模型。

As a basic research problem for building effective recommender systems, post-click conversion rate (CVR) estimation has long been plagued by sample selection bias and data sparsity issues. To address the data sparsity issue, prevalent methods based on entire space multi-task model leverage the sequential pattern of user actions, i.e. exposure $\rightarrow$ click $\rightarrow$ conversion to construct auxiliary learning tasks. However, they still fall short of guaranteeing the unbiasedness of CVR estimates. This paper theoretically demonstrates two defects of these entire space multi-task models: (1) inherent estimation bias (IEB) for CVR estimation, where the CVR estimate is inherently higher than the ground truth; (2) potential independence priority (PIP) for CTCVR estimation, where the causality from click to conversion might be overlooked. This paper further proposes a principled method named entire space counterfactual multi-task model (ESCM$^2$), which employs a counterfactual risk minimizer to handle both IEB and PIP issues at once. To demonstrate the effectiveness of the proposed method, this paper explores its parameter tuning in practice, derives its analytic properties, and showcases its effectiveness in industrial CVR estimation, where ESCM$^2$ can effectively alleviate the intrinsic IEB and PIP issues and outperform baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源