论文标题
通用固定空间中的协变速器方程和重力导率
Covariant transport equation and gravito-conductivity in generic stationary spacetimes
论文作者
论文摘要
我们找到了在宽松时间近似下的相对论鲍尔茨曼方程的近乎详细的平衡解决方案,其碰撞项与安德森式模型不同,并且取决于固定观察者。使用这种新解决方案,我们构建了一个显式的协变量传输方程,以响应通用的固定空间中的广义温度和化学势梯度,以构建剂量的固定空间,其传输张量以化学势和相对论寒冷的某些积分功能为特征。为了说明传输方程的应用,我们研究了Rindler和Kerr空间中的探针系统,并分析了在接近地平线上的重力导电张量的渐近性能。事实证明,重力导电的纵向和侧面部分(如果存在)在接近地平线的极限上往往存在分歧。在弱场极限中,我们的结果与非偏好的重力传输方程相吻合,该方程是由Drude模型的直接应用。
We find a near detailed balance solution to the relativistic Boltzmann equation under the relaxation time approximation with a collision term which differs from the Anderson-Witting model and is dependent on the stationary observer. Using this new solution, we construct an explicit covariant transport equation for the particle flux in response to the generalized temperature and chemical potential gradients in generic stationary spacetimes, with the transport tensors characterized by some integral functions in the chemical potential and the relativistic coldness. To illustrate the application of the transport equation we study probe systems in Rindler and Kerr spacetimes and analyze the asymptotic properties of the gravito-conductivity tensor in the near horizon limit. It turns out that both the longitudinal and lateral parts (if present) of the gravito-conductivity tend to be divergent in the near horizon limit. In the weak field limit, our results coincide with with the non-relativistic gravitational transport equation which follows from the direct application of the Drude model.