论文标题
通过金字塔约束网络对眼底图像的降解不变性增强
Degradation-invariant Enhancement of Fundus Images via Pyramid Constraint Network
论文作者
论文摘要
作为一种经济有效的底底成像方式,视网膜眼底图像在临床底底检查中已被广泛采用。不幸的是,眼底图像通常会受到成像干扰引起的质量降解,导致误诊。尽管最先进的方法实现了令人印象深刻的增强性能,但在临床方案中仍然存在挑战。为了增强眼底图像增强的临床部署,本文提出了金字塔约束,以开发降解不变的增强网络(PCE-NET),从而减轻对临床数据的需求,并稳定增强未知数据。首先,将高质量的图像随机降级以形成共享相同内容(SEQLC)的低质量序列。然后将各个低质量的图像分解为拉普拉斯金字塔特征(LPF),作为增强功能的多级输入。随后,引入了该序列的特征金字塔约束(FPC),以强制执行PCE-NET以学习降解不变的模型。在增强和分割的评估指标下进行了广泛的实验。与最先进的方法和消融研究相比,PCE-NET的有效性已得到证明。这项研究的源代码可在https://github.com/heverlaw/pcenet-image-enhancement上公开获得。
As an economical and efficient fundus imaging modality, retinal fundus images have been widely adopted in clinical fundus examination. Unfortunately, fundus images often suffer from quality degradation caused by imaging interferences, leading to misdiagnosis. Despite impressive enhancement performances that state-of-the-art methods have achieved, challenges remain in clinical scenarios. For boosting the clinical deployment of fundus image enhancement, this paper proposes the pyramid constraint to develop a degradation-invariant enhancement network (PCE-Net), which mitigates the demand for clinical data and stably enhances unknown data. Firstly, high-quality images are randomly degraded to form sequences of low-quality ones sharing the same content (SeqLCs). Then individual low-quality images are decomposed to Laplacian pyramid features (LPF) as the multi-level input for the enhancement. Subsequently, a feature pyramid constraint (FPC) for the sequence is introduced to enforce the PCE-Net to learn a degradation-invariant model. Extensive experiments have been conducted under the evaluation metrics of enhancement and segmentation. The effectiveness of the PCE-Net was demonstrated in comparison with state-of-the-art methods and the ablation study. The source code of this study is publicly available at https://github.com/HeverLaw/PCENet-Image-Enhancement.