论文标题

具有饱和非线性的离散NLS方程中孤子的散射引起的分裂

Scattering-induced splitting of solitons in the discrete NLS equation with saturable nonlinearity

论文作者

Tsoplefack, J. F., Palmero, F., Cuevas-Maraver, J., Provata, A., Frantzeskakis, D. J.

论文摘要

我们系统地研究具有饱和非线性的离散非线性schrödinger(DNLS)方程中局部杂质的散射。我们表明,除了散射过程结果的一般情况外,即反射和传播的孤子的出现,还会发生其他效果。特别是,发现,在有吸引力的杂质的情况下,被困在杂质上的孤子可以与反射和传播的杂物共存。这种效应类似于与狭窄杂质相互作用的量子粒子的行为,以前尚未报道过离散设置。探索了参数制度,以确定杂质上的孤子分裂,并特别注意相等的孤子分裂。

We study systematically the scattering of solitons on localized impurities in the discrete nonlinear Schrödinger (DNLS) equation with a saturable nonlinearity. We show that, apart from the generic scenario of the outcome of the scattering process, namely the emergence of a reflected and a transmitted soliton, other effects can occur. In particular, it is found that, in the case of an attractive impurity, a soliton trapped at the impurity can coexist with the reflected and transmitted ones. This effect, which resembles the behaviour of a quantum particle interacting with a narrow impurity, has not previously reported for discrete setting. Parameter regimes are explored for determining soliton splitting on the impurity with special attention to equal soliton splitting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源