论文标题
具有饱和非线性的离散NLS方程中孤子的散射引起的分裂
Scattering-induced splitting of solitons in the discrete NLS equation with saturable nonlinearity
论文作者
论文摘要
我们系统地研究具有饱和非线性的离散非线性schrödinger(DNLS)方程中局部杂质的散射。我们表明,除了散射过程结果的一般情况外,即反射和传播的孤子的出现,还会发生其他效果。特别是,发现,在有吸引力的杂质的情况下,被困在杂质上的孤子可以与反射和传播的杂物共存。这种效应类似于与狭窄杂质相互作用的量子粒子的行为,以前尚未报道过离散设置。探索了参数制度,以确定杂质上的孤子分裂,并特别注意相等的孤子分裂。
We study systematically the scattering of solitons on localized impurities in the discrete nonlinear Schrödinger (DNLS) equation with a saturable nonlinearity. We show that, apart from the generic scenario of the outcome of the scattering process, namely the emergence of a reflected and a transmitted soliton, other effects can occur. In particular, it is found that, in the case of an attractive impurity, a soliton trapped at the impurity can coexist with the reflected and transmitted ones. This effect, which resembles the behaviour of a quantum particle interacting with a narrow impurity, has not previously reported for discrete setting. Parameter regimes are explored for determining soliton splitting on the impurity with special attention to equal soliton splitting.