论文标题
学习野外面部表达识别的多元化特征表示
Learning Diversified Feature Representations for Facial Expression Recognition in the Wild
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Diversity of the features extracted by deep neural networks is important for enhancing the model generalization ability and accordingly its performance in different learning tasks. Facial expression recognition in the wild has attracted interest in recent years due to the challenges existing in this area for extracting discriminative and informative features from occluded images in real-world scenarios. In this paper, we propose a mechanism to diversify the features extracted by CNN layers of state-of-the-art facial expression recognition architectures for enhancing the model capacity in learning discriminative features. To evaluate the effectiveness of the proposed approach, we incorporate this mechanism in two state-of-the-art models to (i) diversify local/global features in an attention-based model and (ii) diversify features extracted by different learners in an ensemble-based model. Experimental results on three well-known facial expression recognition in-the-wild datasets, AffectNet, FER+, and RAF-DB, show the effectiveness of our method, achieving the state-of-the-art performance of 89.99% on RAF-DB, 89.34% on FER+ and the competitive accuracy of 60.02% on AffectNet dataset.